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Standing capillary-gravity waves of finite amplitude 
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Lawrence Radiation Laboratory, University of California, 

Berkeley, California 

(Received 25 June 1962) 

Standing surface waves in an inviscid incompressible fluid of finite depth are 
considered, taking into account the effect of capillary forces. Perturbation 
solutions for the surface profile, velocity potential, frequency of oscillation, and 
pressure are found to third order in the amplitude of the waves. A graph is given 
showing the regions in which the frequency of oscillation increases with amplitude 
and those in which it decreases with amplitude. These regions are defined as a 
function of the depth of the fluid and a parameter called the relative capillarity. 
A graph is also given showing the surface profile of a wave. 

1. Introduction 
The problem of standing gravity waves of finite amplitude on the surface of 

a fluid of uniform finite depth has been solved to third order by Tadjbakhsh & 
Keller (1960). (They are hereafter referred to as T & K.) The present paper 
applies their method to solve the more general problem, which includes capillary 
as well as gravitational forces. For long wavelengths under normal terrestrial 
conditions, capillary forces are generally negligible in comparison with gravita- 
tional forces. However, for short wavelengths or in an environment in which the 
acceleration field is less than the gravitational field of the earth at  its surface, the 
capillary forces may no longer be negligible. The fluids considered here may have 
any surface tension and may be in an acceleration field of any magnitude that 
acts vertically downward, the only restriction being that the surface tension and 
acceleration field are not both zero, although one of them may be zero if the 
other is not. 

An attempt is made to follow the notation of T & K so that their results can be 
easily compared with the ones presented here. Because of the introduction of 
surface tension and an acceleration field of arbitrary magnitude, a slightly 
different definition of some of the non-dimensional variables is required. However, 
in the absence of capillary forces and under normal terrestrial conditions, the 
variables reduce to theirs. Some of the details of their formulation are duplicated 
here for completeness. Of particular interest is the effect which introduction of 
capillary forces has on the critical depth found by T & K, at less than which the 
frequency of a wave increases with amplitude and a t  greater than which the 
frequency decreases with amplitude. 



Standing capillary-gravity waves of finite amplitude 569 

2. Formulation 
The time-periodic, irrotational, two-dimensional motion of an inviscid incom- 

pressible fluid bounded below by a rigid horizontal plane and above by a free 
surface is considered. A uniform acceleration field of arbitrary strength acts 
vertically downward on the fluid, and surface tension effects are included. The 
motion is taken to be periodic in the horizontal direction and symmetric about the 
vertical plane x = 0,  so that only the fluid between that plane and a parallel plane 
one-half wavelength from it need be considered. Let A denote the wavelength; 
k = 2n/h the wave-number; k-lh the mean depth of the liquid; k-lx and k-ly the 
distances along the horizontal and vertical axes, respectively; Kg the magnitude 
of the downward-acting uniform acceleration field, where g is the acceleration due 
to gravity and K may be any non-negative number; and y = c k 2 / p g ,  a dimension- 
less parameter proportional to Laplace's capillary constant, where c i s  the surface 
tension of the liquid-vapour interface and p is the density of the liquid. Let 
S = ? / ( K  + y )  be a parameter called the relative capillarity; its value lies between 
zero and one. For 6 < 1, the capillary effects are small; whereas, for (1 - 6) < 1, 
they predominate. Finally, let [ k g ( K  + y)]9 o denote the angular frequency; 
[kg(K + y)]-* w-l t the time; a the amplitude of the linearized surface wave motion; 
ek-ly(x, t )  the elevation of the surface above the mean level given by the plane 
y = 0,  and e[g(K + y)]* k-Q$(x, y, t )  the velocity potential. 

In  terms of these dimensionless quantities, the equations of motion are 

A$ = 0 in 0 < 5 < n and -h < y <.ey(x,t), (1)  

(1 - S) 7 - S[y,(l -$e2r/ i  + O(e3))] + w $ ~  + it.($$ + @) = 0 on y = q ( x ,  t ) ,  (2) 

$u = W T t + E $ z 7 z  on y = M X , t ) ,  (3) 

a$pn = 0 on x = 0,  x =  IT,^ = -h, (4) 

and 

J:h J: Jo2m $(x,  y ,  t )  sin t cos x dt dx ciy = 0, 

Ion 1; $(x,  y ,  t )  cos t cos x dt dx dy = 3n2(tanh h)*. (9) 

Equation (1) is the Laplace equation governing irrotational flow; ( 2 )  is Bernoulli's 
law for constant external pressure a t  the free surface of the fluid including the 
Taylor's series expansion of the surface-tension terms to third order about e = 0;  
(3) is the condition that a particle once on the surface remain on the surface; 
(4) is the condition that the normal velocity component vanish on the planes of 
symmetry, x = 0 and x = IT ,  and on the bottom rigid surface, y = - h;  ( 5 )  is the 
condition that the slope of the free surface be continuous at x = 0 and x = IT if 
these are planes of symmetry, or that the contact angle be fixed at  +IT during the 
motion if these are rigid bounding walls; (6) is the condition that the mean free 
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surface is y = 0;  (7) is the condition that the motion be periodic in time; and (8) 
and (9) fix the phase and amplitude of the motion. 

The pressure p(x ,  y, t )  is given by Bernoulli’s law, 

W P  -Po)IPS(K + Y) = - (1 - 8) Y - gw$t - *%% + $$), (10) 

where po denotes the pressure of the atmosphere above the fluid. Because of the 
surface-tension effects, the pressure in the fluid just below the free surface y = €7 
is not po,  but, as combining (10) with (2) shows, is discontinuous by an amount 

k(P-Po)lPg(K+Y) = -E8[7zz{l-~g2y~+0(€3)}l on 9 =“7. (11) 

The problem to be solved is the determination of q(z,t), $ ( z , y , t ) ,  and w 
satisfying equations (1) through (9). This is done by determining the first three 
terms in the expansion of the solution in powers of 6. 

As was noted by T & K for the problem without capillary effects, a unique 
solution does not exist for those values of h for which the linear theory yields 
a frequency that is an integral multiple of the fundamental frequency. The same 
holds true for the present problem, and in order to make the solution unique 
(except for the arbitrary additive constant to $), it must be required that the 
frequency of the nth spatial harmonic [n{l + S(n2 - 1)) tanhnhlt is not an integral 
multiple of the fundamental frequency (tanh h)*. Thus the condition 

n = 2,3, ..., t j = 1,2, ..., 
n[ 1 + 6(n2 - l)] tanh nh 

tanh h 
$. j2, for 

is imposed. 

3. Solution 

70, $0, and wo as 8 tends to zero. Conditions (2) and (3) then become 
The zero-order equations are found by assuming that 7, $, and w have limits 

(1-8)yO-Sq~z+wo$~ = 0 on y = 0, (2.0) 

$ ~ - w o $ = O  on y =  0. (3.0) 

Equations (1) and (4) to (9) remain unchanged in form as equations in 7 0 ,  $0, and 
wo. The solution to the zero-order problem is 

qo = sint cosz, (13) 
$O = (w,/sinhh) cost cos z cosh (y + h),  (14) 

wf = tanhh. (15) 

Notice that the shape of the wave does not depend on the value of 6, the relative 
capillarity, so that the waveform obtained here is the same as the waveform 
obtained for the linear problem in the absence of surface tension. However, the 
frequency of oscillation is, in general, different, since the definition of the 

t Dr Tadjbakhsh has pointed out to me that it is necessary to put the amplitude condition 
on q5 rather than 7 so that the expansion parameter 8 agrees with that of Penney & Price 
(1952). It is algebraically more convenient to put the phase condition on q5 also, rather 
than on 7 as done by T & K. 
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dimensionless w, depends upon the surface tension and magnitude of the 
acceleration field. 

The first-order equations are found by assuming that 7, 4, and w have first 
derivatives with respect to E at E = 0, where these derivatives are denoted by 
rl, $l, and w,. Differentiating (1) to (9) with respect to E ,  utilizing 

d4(x, €7, t, €)Id€ = [alas + (7 + ere)  apy14 

( 1 - - 4 ~ ~ - 6 q & ~ + w , &  = -9[(41)2+(4",2]-ooro4~~-wl~~ on y = 0, (2.1) 

(3.1) 

in (2) and (3), and letting e = 0 yields 

4; - 0 0  rZ = 71 41 - To&/ + 0 1  7; on Y = 0, 

and yh j-onj-~41(x, y,t)cost cosxdtdxdy = 0. 

Equations (1) and (4) to (8) remain of the same form as equations in 71, qP, and wl .  
Substitution of (13) to (15) into (2.1) and (3.1) yields 

(1 - 6)  ql - ST&. + w, 4; = g[(w; - w,2) + (4 + w,2) cos 2x - ( 3 4  + w,2) 

x cos 2t - (308 - w ~ ~ )  cos 2t cos 2x1 + (wl /wo)  sin t cos x on y = 0, (16) 
and q 5 ~ - w o r ~  = - (1/2w0)sin2t cos2x+wlcos tcosx on y = 0. (17) 

Differentiation of (16) with respect to t and substitution of T,$ from (17) and q&zt 
from (17), which has been differentiated twice with respect to x, yields 

- S$',,+ (1 - 6) $;+wt& = 4(3wg fog1) sin 2t+ $[wg- (1 + 26)w;lI 

xsin2t cos2x+2w1cost cosx on y = 0. (18) 

Separation of variables yields for the solution of (l) ,  subject to (4), 

a 

qP(x, y,t) = x' A,(t)cosnxcoshn(y+h). 
n=O 

Substitution of (19) into (18) yields 

w ~ A , , ,  = a ( 3 4  + wgl) sin 2t, 

wg cosh hA,,, + sinh h A ,  = 2w, cost, 
(20) 

(21) 

w~coshnhA,,,+n[1+(n2-1)6]sinhnhA, = 0 for n = 3,4 ?.... (23) 

wt cosh 2hA,, + 2( 1 + 36) sinh 2hA, = $[wi  - (1 + 2 4  w;l] sin 24 (22) 

From (7) and (21), it  follows that A ,  must be periodic in t with period 277 for 
n 2 1, and from (12) and (23) that A ,  = 0 for n 2 3. From (12), (15) and (22) 
there results 

3[w, -%;3 - (1 + 26) w;71 
~ sin 2t. A 

- 16(1-36w,j-4)cosh2h (24) 

The periodicity of A,  requires w, = 0,  so that (21), (19), (8) and (9.1) then yield 
A ,  = 0. Finally, (20) yields 

A,  = -&(3w, + 0c3) sin 2t + a, t +Po, (25) 

where a, and Po are constants to be determined. 
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Substitution of the above results into (19), and substitution of the resulting 
expression for 9' into (16), yields 

- &Tiz + (1 - 6) = Q(wf - w;2) - wo a. + *(wf + w,2) cos 2x 

+ &[( 1 + 36) ( w t 2  - 3wC6)/( 1 - 36wt4)] cos 2t cos 2 ~ .  (26) 

The solution of (26) subject to (5) is 

w a w f - 1 - 0 ; ~  w t 2  - 3w,6 

a( 1 - 36w04) 
71 = ___ ( w i - w - 2  cos 2x + C 0 8  2t cos 2x. O O f  

1 
8(1-6) )-m 8(1+36) 

Equation (6) requires 
a. = ~ ( w o - w ; 3 ) .  

The solution to the first-order problem is thus 

cos 2t cos 2x, 1 
@ =  Po + Q(wo - w r 3 )  t -&(3w0 + w t 3 )  sin 2t 

- (3[w0 - 26wr3 - (1 + 26) w07]/16( 1 - 3 6 ~ 0 ~ )  cosh 2h) 
xsin2t cos2zcosh2(y+h), (28) 

w1 = 0) (29) 
where Po is an arbitrary constant. 

Notice that the first-order waveform depends upon the value of 6, so that the 
presence of capillary forces changes the shape of the wave from that for 6 = 0. 
In  either case, w1 = 0, however. 

The second-order equations are found by assuming that q,#,  and w have second 
derivatives with respect to E a t  e = 0, where these derivatives are denoted by 
r2, $2, and 02. Differentiating (1) to (9) twice with respect to E and letting E = 0 
leaves equations (1) and (4) to (8) unchanged in form as equations in 72, q52, and w2. 
Equation (9) becomes of the same form as (9.1), andnew equations (2.2) and (3.8) 
result giving the appropriate conditions on y = 0. Proceeding exactly as in the 
first-order case, elimination of 72 from (2.2) and (3.2) yields 

- 6@zz + (1 - 6) q5; +a; $75; = Ell cost cos x + a13 cost cos 32 

+ a31 COS 3t cos x + a33 cos 3t COS 3x, (30) 
where 

I, 1 
16 

2wi+ 3(1+ 962)wo+ 3(4+ 66- 9J2- 27a3)wc3- 9(1+ 5~Y+46~)w;~ 

[ (1 + 36) (1 - 36~C*) 
all = 2w2 + - 

2 ~ :  + ( - 5 - 186+ 1176') w0 + 3( - 146+ 9J2 - 45a3) w c 3  
+3(1+56- 12P- 144a3)wt7 

(1 + 36) (1 - 36w,4) %3 = 

1 9  

1 (31 - 96) w0+ ( -  62- 246+ 27a2)wC3- 3(3+ 4 6 ) ~ ; ~  
(1 - 36w,4) 

l [  

E31 = [ 
and 

a33 = - 
16 

13( 1 - 6) w0 - (22 + 326- 15a2) or3 + 3( 3 + 206 + 16d2) W, 

(1 - 36044) 

9 
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Solving for $a and 72 exactly as before (alI is found to be zero, thus determining
oa) yields the solution to the second-order problem as

v2 = b,, sin t co9 x + b,, sin t cos 3x + b,, sin 3t co9 x + b,, sin 3t cos 3x, (32)
$” = ,d2 + ,d13 cos t cos 3x cash 3( y + h) + ,&a1 cos 3t cos x cash (y + TL)

+/?,,cos3tcos3xcosh3(y+h),  ( 3 3 )

1
w2 = 32

[

-22wg-3(1+962)wo- 3(4+66-982-2763)w,3+9(1+56+462)w,7
(1 + 36) (1 - 3&0,4) 1

(31)
where p2 is an arbitrary constant, and

b =” 2w~-(5+126-2762)+3(2+1OS-3362-2763)w,4+3(1+56)w,s
l1 32 [ (1 + 36) (1 - 3&!J,4) I3

[
2&$+(1-l&J- 2762)w$- 3(5+ 246+ 186”- 27a3)

h3 = gg
+3(9+356+3962+8163)0~4+9(1+56+462)GJ;8

d (1 + 38) (1 - 36w,4) [1+ 3cqw; + 3)]

-5+38+9(2-62)w,4+3(1-46)w,8
(1 - 3h~4)

b
33

_ 3
128

[1-~+3(-1-S+62)W~4+(3+4&+932)#+3(3+4S)0fy12  I
(1 - 36w,4) [l - 6( 3w,4)]1+ 3

and (35)
2wi+  (-5- 186+ 117S2)u;1+  3( - 14S+962-4563)w,5

P13 =
1+3w$ +3(1+56-12~2-144&3)w,yg

128 cash 3h (1 + 36) (1 - 3&x&4) [ 1+ 3&d;  + 3)] I‘7p31 = - l [(31-98)o,1+(-62-246+27S2)0,5-3(3+46)w,9-___128 cash h 1 - 360~4 1 ,
13( - 1 + 6) wf5+ (22 + 326- 15cY2)  o@’

P33 =
1+3w$ - 3(3 + 20Q+ 16S2) w;13

128 cash 3h (1 - 360,4) [l - 6( 1 + 30,4)] 1-I
(36)

Notice that the second-order waveform and second-order frequency both depend
upon the value of 6, so that the presence of capillary forces changes them from
their values for 6 = 0.

4. Conclusion
The final solution to the problem is found by substituting the results for the

zero-, first- and second-order problems as given by (13) to (15),  (27) to (29),  and
(32) to (34) into

s$J = qqx, t) + s2@(x, t) +&+2(x,  t) + O(e4), (37)
&# = e#O(x,  y, t) + E2@(X,  y, q + +3p(x,  y, q + O(E4), (38)

and 0 = w. + +z202 + O(G). (39)

The pressure may then be found by substituting the appropriate derivatives of $
as calculated from (38) into (10).



574 Paul Concus 

Of significant interest is the variation of the frequency of oscillation with 
amplitude as given by (39). The difference between the frequency of oscillation w 
and the fundamental frequency wo is given to the desired order of approximation 
by the term $e202. Examination of (34) shows that w2 may be either positive or 
negative depending upon the values of wo and 6. These quantities both lie 
between zero and one, wo being determined by the mean depth of the liquid 
from (15). As h increases from zero to infinity, wo increases from zero to one. 

The regions of positive and negative w2 are shown in figure 1. To the left of the 
curve labelled I and to the right of the curve labelled I1 w2 is negative, and between 
the curves it is positive. Curve I11 is explained later. Curve I corresponds to a 

W 

\ \ \  \ \ \ \ \ \ \  \ \ V / / A / / / / / / , h \ \ \ \ \ '  

s 
FIGURE 1. The location of the zeros and poles of w2 and the poles of yl, $l, y2, and $2. 

cd2 is zero along 1; 02, yl, $l, y2, and $z have poles along 11; ?la and $a have poles along 111. 

sign change in the numerator of (34), so that for values of 6 and h lying on this 
curve w2 is zero. The intersection of this curve with the h axis a t  h = 1-06 corre- 
sponds to the critical depth h* found by T & K for 6 = 0. 

Curve I1 corresponds to the sign change of the term (1 - 36~;~) in the denomi- 
nator of (34). For values of 6 and h lying on this curve, the denominator in the 
expression for w2 is zero, which represents a resonance condition for the second 
harmonic. Curve 11, however, is the curve represented by (12) for n = j = 2, so 
that points on i t  are excluded by the uniqueness condition. For points near the 
curve, the coefficient of the second harmonic in the solutions for q and 4 can still 
become very large. 

Curve I11 corresponds to the sign change of the term [l - 6( 1 -t- 3w04)]  in the 
denominator of b,, in (35) and p3, in (36), and represents a resonance condition 
for the third harmonic. This curve is given by (12) for n = j = 3; hence, points on 
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it are excluded, but for points near it the solutions for r j  and q5 contain large 
amounts of the third harmonic. 

If the solution were carried out to higher order in E ,  one would find additional 
resonance curves for the other harmonics and these curves would correspond to 
(12) for certain pairs of values of n and j. Points on these curves would thus be 
excluded, but for points near the curves, the amount of the corresponding 
harmonic present in r j  and q5 would be large. These resonance curves all lie to the 
left of 11, the higher the harmonic the closer the curve lies to the h-axis. 

0 1  02[ 

.* ..* 
-0.2 - 

FIGURE 2. Standing-wave profile at t = (n+# 7r for E = 0.05, h = 0.25, S = 0.04. 
Solid curve is for n even and broken curve for n odd. 

It should be understood, then, that equations (37), (38), and (39) form a solution 
to the problem in the sense that as E approaches zero, the behaviour is as given. 
One does not imply, however, that for a given E the low-order terms presented in 
(37 ) ,  (38), and (39) are always larger than the additional terms one would obtain 
by carrying the solution out to higher orders in E .  Also, one could not use the 
solution for points too close to curves I1 and 111, since too large a second or third 
harmonic would violate some of the implicit conditions of the problem such as the 
requirement that the lower bounding surface never be exposed or the requirement 
that the frequency of oscillation be positive. 

In  figure 2, the profile of one-half wavelength of the surface is shown as calcu- 
lated from (37 )  at the times t = (n + +) 7r, which correspond to the times when the 
velocity throughout the fluid is zero. These are the times when, for a given x, the 
surface is a t  either its highest or lowest position. The solid portion is for n odd and 
the dotted portion for n even, the surface oscillating between the two. The curves 
are calculated for E = 0.05, h = 0.25, and S = 0.04. Figure 1 shows that h = 0.25, 
6 = 0-04 is about the same distance from resonance curves I1 and I11 as is 
h = 0.25, 6 = 0, so that the higher-order terms should be of about the same 
magnitude in each case, but generally different in sign. The curves for h = 0.25 
and S = 0 are given in figure 1 of T & K and comparison with their curves shows 
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this to be so. The surface profile for values of h and 6 farther away from curves I1 
or I11 would contain less of the second and third harmonics and be composed 
primarily of the fundamental curve yo predicted by the linear theory. 

Some of the effects discussed here should not be too difficult to observe in the 
laboratory. For example, a fluid depth h = 0.25 corresponds approximately to 
6 = 0.02 on curves I1 and I11 in figure 1. Under normal terrestrial conditions, 
a value of 6 = 0.02 is equivalent to a wavelength of about lOcm in water. To 
achieve larger values of 6 for reasonable wavelengths, however, one would have 
to experiment in a significantly reduced gravitational field. 

The greater part of the work reported here was carried out at  the Lockheed 
Missiles and Space Company, Palo Alto, California under Air Force Contract 
No. AF 04(647)-788 and the remainder under the auspices of the U.S. Atomic 
Energy Commission. 
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